QTEP: Quality-Aware Test Case Prioritization

Song Wang, Jaechang Nam, Lin Tan
{song.wang, jaechang.nam, lintan}@uwaterloo.ca
Electrical and Computer Engineering, University of Waterloo
Waterloo, ON, Canada

ABSTRACT
Test case prioritization (TCP) is a practical activity in software testing for exposing faults earlier. Researchers have proposed many TCP techniques to reorder test cases. Among them, coverage-based TCPs have been widely investigated. Specifically, coverage-based TCP approaches leverage coverage information between source code and test cases, i.e., static code coverage and dynamic code coverage, to schedule test cases. Existing coverage-based TCP techniques mainly focus on maximizing coverage while often do not consider the likely distribution of faults in source code. However, software faults are not often equally distributed in source code, e.g., around 80% faults are located in about 20% source code. Intuitively, test cases that cover the faulty source code should have higher priorities, since they are more likely to find faults.

In this paper, we present a quality-aware test case prioritization technique, QTEP, to address the limitation of existing coverage-based TCP algorithms. In QTEP, we leverage code inspection techniques, i.e., a typical statistic defect prediction model and a typical static bug finder, to detect fault-prone source code and then adapt existing coverage-based TCP algorithms by considering the weighted source code in terms of fault-proneness. Our evaluation with 16 variant QTEP techniques on 33 different versions of 7 open source Java projects shows that QTEP could improve existing coverage-based TCP techniques for both regression and new test cases. Specifically, the improvement of the best variant of QTEP for regression test cases could be up to 15.0% and on average 7.6%, and for all test cases (both regression and new test cases), the improvement could be up to 10.0% and on average 5.0%.

CCS CONCEPTS
• Software and its engineering → Software testing and debugging. Automated static analysis.

KEYWORDS
Test case prioritization, defect prediction, static bug finder

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

1 INTRODUCTION
Modern software constantly evolves as developers make source code changes such as fixing bugs, adding new features, refactoring existing code, etc. To ensure that the changes do not introduce new bugs, regression testing is commonly conducted against existing functionalities.

However, regression testing can be expensive. Especially for large projects, the regression testing could consume 80% of the overall testing budgets and require weeks to run all test suites [14, 24, 64]. Intuitively, test cases that could reveal bugs should be run earlier so that the developers could have more time to fix the revealed bugs and speed up the system delivery.

Along this line, test case prioritization (TCP) has been proposed and intensively studied for regression testing [23, 44, 50, 52, 53, 64, 66, 75, 82, 83]. TCP techniques reorder test cases to maximize a certain objective function, typically exploring faults earlier [64]. TCPs also have been widely adopted in industry. For instance, Microsoft has deployed systems that support TCP such as Echelon [70] and Microsoft Dynamics AX [13]. Researchers have applied TCP techniques on projects from Google [24, 84] and Salesforce.com [12] and have shown that TCPs could significantly improve the efficiency of regression testing.

Many TCP techniques have been proposed such as coverage-based TCPs [17, 36, 37, 44, 50, 64, 88], requirement-based TCPs [7, 33], and change-based TCPs [35, 66], etc. Coverage-based TCPs have been shown to outperform other TCPs in terms of revealing faults [32, 47, 48]. A typical coverage-based TCP technique leverages coverage information between source code and test cases, i.e., static code coverage (static call graph from current version) and dynamic code coverage (dynamic call graph from the last execution), to schedule test cases by maximizing code coverage with different coverage criteria. Coverage-based TCPs assign higher priorities to test cases that have higher dynamic or static code coversages.

Existing TCP techniques often do not take the likely distribution of faults in source code into consideration. In other words, they assume that faults in program source code are equally distributed. However, as reported in existing work [60, 61, 72], the fault distribution in source code is often unbalanced, i.e., around 80% faults are located in about 20% source code [60]. Intuitively, test cases that cover the more fault-prone code are more likely to reveal bugs so that they should be run with a higher priority.

The goal of this study is to propose a quality-aware TCP technique, QTEP, that addresses the above limitation of existing TCPs. We evaluate the quality of source code in terms of fault-proneness...
and then we further use the quality information to prioritize test cases.

To achieve the goal, QTEP gives more weight to fault-prone source code so test cases that cover the fault-prone code have a higher priority to be executed. We identify fault-prone source code in a software project by using two code inspection approaches, i.e., static bug finders and defect prediction models, which are two widely studied approaches in code inspection research to help developers find bugs [9, 42, 62]. In this study, we leverage these two code inspection techniques to improve existing coverage-based TCPs.

In addition, we apply QTEP to both regression and new test cases. Most existing TCP techniques only focus on prioritizing regression test cases [17, 36, 37, 44, 50, 64, 82, 88]. However, in real-world testing practice, the test suite for a modified software system often consists of: (1) existing test cases, i.e., regression test cases, which are designed to verify whether the existing functionalities still perform correctly after changed, and (2) new test cases, which are added to test the modification. During software evolution, these two types of test cases are essential for testing the modified software and detecting bugs [47]. Thus, we consider both the two types of test cases in this study.

This paper makes the following contributions:

- We propose a novel quality-aware TCP technique, QTEP, which leverages two dominant code inspection techniques, i.e., a typical statistic defect prediction model and a typical static bug finder, to weight source code in terms of fault-proneness. Then, QTEP adapts existing coverage-based TCPs by considering the fault-proneness of source code.
- We conduct an extensive study to compare the performance of QTEP with existing coverage-based TCPs for both regression test cases and new test cases at the class- and method-level granularities.
- We present a rigorous empirical evaluation using 33 versions of 7 open source Java projects and explore 16 different variants of the proposed QTEP. Results show that QTEP could improve existing coverage-based TCP techniques for both regression and new test cases. Specifically, the improvement of the best variant of QTEP for regression test cases could be up to 15.0% and on average 7.6%, and for all test cases (both regression and new test cases), the improvement could be up to 10.0% and on average 5.0%.

The rest of this paper are organized as follows. Section 2 describes the basic background. Section 3 shows the design of QTEP. Section 4 shows the setup of our experiments. Section 5 presents the results of our research questions. Section 6 discusses our results and the threats to the validity of this work. Section 7 surveys the related work. Finally, we summarize this paper in Section 8.

2 BACKGROUND

2.1 Test Case Prioritization

A typical TCP technique reorders the execution sequence of test cases based on a certain objective, e.g., fault-detection rate [64]. Specifically, TCP can be formally defined as follows: given a test suite \(T \) and the set of its all possible permutations \(PT \), TCP techniques aim to find a permutation \(P' \in PT \) that \((\forall P'' \in PT) (P'' \neq P') \), \(f(P') \geq f(P'') \), where \(f \) is the objective function.

Most existing TCPs leverage coverage information, e.g., dynamic code coverage (dynamic call graph) from the last run of test cases [37, 65], static code coverage (static call graph) from static code analysis [17, 36, 50, 69, 74]. The commonly used coverage criteria include statement, method, and branch coverages. In this work, we choose to examine statement and method coverages, since previous work has shown that statement and method coverages are more effective than other coverage criteria [47, 48, 66].

For coverage-based TCP techniques, there are two widely used prioritization strategies, i.e., total strategy and additional strategy [44, 64, 82]. The total coverage strategy schedules the execution order of test cases based on the total number of statements or methods covered by these test cases. Whereas, the additional coverage strategy reorders the execution sequence of test cases based on the number of statements or methods that are not covered by already ordered test cases but covered by the unordered test cases.

In this study, we validate whether performances of the coverage-based TCP techniques could be improved by considering the results of code inspection techniques. The reason we focus on the coverage-based TCP techniques is that they have been widely explored and outperformed most of the other TCP techniques [32, 47, 48]. In addition, we evaluate the state-of-the-art coverage-based TCP techniques for both regression and new test cases.

2.2 Code Inspection Techniques

Software static code analysis techniques and software defect prediction models are two lines of work to help detect software bugs. Static bug finders, e.g., FindBugs [34], PMD, and Jlint, leverage well-defined bug patterns and report likely bug locations in source code. Defect prediction models build machine learning classifiers based on various metrics [18, 29, 30, 49, 78] and predict where defects are likely to occur in the source code [42]. Both techniques are widely used for detecting fault-prone code. Rahman et al. [62] found that these two techniques complement each other to find different bugs.

In this work, we examine whether the two code inspection techniques could help improve existing TCP techniques.

2.2.1 Static Bug Finders. Static bug finders (BF) detect specific kinds of coding errors such as buffer overflow, race conditions, and memory allocation errors, via programming patterns [15, 25, 26, 39, 45, 58, 62, 71, 77, 79]. Static bug finders mainly include informal heuristic pattern-matching approaches and formal verification techniques. In practice, formal verification approaches are not scalable, so most static bug finders are pattern-based.

Typical pattern-based bug finders include FindBugs [34], PMD, and Jlint, which have been widely used to detect real-world software bugs. Previous work [62] has shown that FindBugs is more effective than PMD and Jlint in terms of detection precision. Since one focus of this study is to explore the feasibility of leveraging the results of static bug finders to improve the efficiency of existing TCP techniques, Thus, we only use the representative static bug finder, i.e., FindBugs, in our experiments.

2.2.2 Software Defect Prediction. Software defect prediction techniques (DP) leverage various software metrics to build machine learning models to predict unknown defects in the source code [31, 38, 51, 56, 57, 72, 78, 80, 87, 91]. Based on the prediction results, software quality assurance teams can focus on the most defective parts of their projects in advance.
Figure 1: Overview of the proposed QTEP. \(V_n \) and \(V_{n+1} \) are two versions. \(C_1 \) to \(C_m \) are consecutive commits between these two versions that introduce changes to the source code and test cases.

Typically, defect prediction models could be categorized as supervised or unsupervised models. Most of existing defect prediction models are supervised \([31, 38, 51, 56, 72, 78, 80, 91]\). These models leverage past defects from software historical data to build machine learning classifiers and then use the classifiers to predict future bugs. However, not all projects have enough defect data to build a defect prediction model, so unsupervised models \([57, 87]\) are also proposed based on the characteristics of defect prediction metrics. To directly compare QTEP to existing TCP techniques, we reuse 33 versions from 7 open source Java projects from previous TCP studies \([21, 50, 66]\). Some of these projects do not have well-maintained past defects. This means we do not have enough defect data to build supervised models. Thus, we only examine unsupervised defect prediction models in our experiments.

Note that our goal of this study is not to find the best defect prediction metrics, so we only build defect prediction models with 21 widely used code metrics, e.g., lines of code \([46]\), code complexity metrics \([31, 46, 51]\), and object-oriented metrics \([22]\). We use the Understand \([3]\) to collect these code metrics. The work from Zhang et al. \([86]\) contains the full list of these metrics, which are described in their Table III.

3 APPROACH

Figure 1 illustrates that our approach consists of three steps: (1) leveraging code inspection techniques to detect fault-prone source code (Section 3.1), (2) weighting source code based on results from different code inspection approaches (Section 3.2), and (3) adapting existing TCP techniques and evaluating the results (Section 3.3).

3.1 Fault-prone Code Inspection

Code Inspection with FindBugs. Given a subject project, we directly perform FindBugs on its source code (without test code) to detect potential bugs. Since FindBugs only outputs detection results at line level, we aggregate the results into method level and class level to meet different TCP granularities. Moreover, we consider all detection results grouped by various categories. FindBugs groups detected fault-prone code instances into categories such as correctness, vulnerability, malicious code, security, multi-threaded correctness, performance, bad practice, and dodgy code. The first six types are likely to be real bugs, the last two types are refactoring issues. Since bad practice and dodgy code could also fail test cases, in this work, we use all these reported fault-prone code instances as seeds to weight source code.

Code Inspection with Defect Prediction Model. Similar to static bug finders, defect prediction models also predict potential faults in the source code snapshot. As we described in Section 2.2.2, we build unsupervised defect prediction models in this work. For the unsupervised defect prediction models, we use the state-of-the-art technique, i.e., CLAMI \([57]\), which achieves comparable performance to supervised models and has been open-sourced. To consider different test case prioritization strategies and scenarios, we build CLAMI models at both method and class levels and CLAMI directly outputs the lists of predicted bugs at both levels.

In this study, we use all the reported warnings from FindBugs (or CLAMI) to initialize QTEP without filtering out any of them.

3.2 Weighting Source Code Units

We leverage the detection results from the two code inspection approaches to weight the fault-prone source code units. A code unit could be a statement, a branch, a method, or a class, which depends on different test case prioritization strategies. In this work, we focus on weighting statement-level and method-level code units since we use statement-level and method-level coverage criteria to examine coverage-based TCPs (Section 2.1).

Algorithm 1 shows how to weight statement-level and method-level code units by using detection results from the code inspection approaches. Note that, we use the detected buggy classes and methods by the two code inspection approaches. Initially, the algorithm assigns a default weight to all code units (i.e., all statements and methods). Then, given a code unit, if the class or the method that contains this code unit is detected as buggy, the weight of this code unit will be calculated by accumulating the weights of the buggy
class or the buggy method. Otherwise, if the class or the method
that contains this code unit is identified as clean, its weight will
not be updated. Code units that are not covered by any buggy class
or method will be assigned the default weight.

Parameters: In the above algorithm, there are three parameters,
i.e., weight_base, weight_c, and weight_m that could affect the
effectiveness of the proposed QTEP. We describe the setup, tuning,
and impact of these three parameters in Section 4.6.

- weight_base is the base weight for all code units, i.e., the
default weight for initializing the weights of all code units.
- weight_c is the weight for detected buggy classes by code
inspection techniques.
- weight_m is the weight for detected buggy methods by
code inspection techniques.

For CLAMI, we use the class-level prediction results as seeds to
weight code units using weight_c, and use the method-level prediction
results as seeds to weight code units using weight_m. FindBugs
outputs detection results at line level, with the line-level detection
results, one can assign the reported buggy lines a different weight,
and further accumulate the lines to weight the involved statements
and methods. While, to make the calculation of FindBugs consist-
tent with defect prediction models, in this work, similar to CLAMI,
we use the classes and methods that contain the detected buggy
lines as seeds to weight code units using weight_c and weight_m
respectively.

3.3 Quality-Aware Test Case Prioritization
After weighting all the source code units of a project, we then adapt
existing coverage-based TCP techniques using these weighted code
units. Comparing to existing coverage-based TCPs, QTEP leverages
the quality-aware coverage information of test cases. In this section,
we show how to calculate the quality-aware statement and method
coverages of a test case.

A project P has m method-level code units, i.e., \{mc_1, mc_2, ..., mc_m\},
and s statement-level code units, i.e., \{sc_1, sc_2, ..., sc_s\}. Its test suite T
consists of n test cases, i.e., \{t_1, t_2, ..., t_n\}. $MWighted$ \{(mw_1, mw_2, ..., \mv_m\})
and $SWighted$ \{(sw_1, sw_2, ..., sw_s\}) are the weight sets for
the method-level and the statement-level code units respectively.

Given a test case t_i ($1 \leq i \leq n$), we use $QMCoverage[t_i]$ and
$QSCoverage[t_i]$ to denote its quality-aware method coverage and
statement coverage respectively.

\[
QMCoverage[t_i] = \sum_{j=1}^{m} \text{cover}(t_i, mc_j) \times mw_j
\]
\[
QSCoverage[t_i] = \sum_{j=1}^{s} \text{cover}(t_i, sc_j) \times sw_j
\]

where, \text{cover}(t_i, mc_j) or \text{cover}(t_i, sc_j) is 1, if test case t_i covers
code unit mc_j or sc_j, otherwise 0. mw_j and sw_j are the weights
for method-level code unit mc_j and statement-level code unit sc_j
respectively.

Note that, to calculate the quality-aware coverages for test cases,
one could leverage different coverage information (i.e., dynamic cov-
erage and static coverage information) and different code inspection
techniques (i.e., FindBugs and CLAMI). With the quality-aware cov-
erages (i.e., $QMCoverage$ and $QSCoverage$) of each test case, QTEP
further prioritizes test cases with different prioritization strategies
(i.e., total and additional).

Table 1: Experimental subject programs. VPair denotes a version
pair. RTC, RTM, and RF are the number of regression test classes,
regression test methods, and regression faults respectively. NTC,
NTM, and NF are the number of new test classes, new test methods,
and mutation faults for new test cases respectively.

<table>
<thead>
<tr>
<th>No.</th>
<th>Project</th>
<th>VPair</th>
<th>RTC</th>
<th>RTM</th>
<th>RF</th>
<th>NTC</th>
<th>NTM</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Time&Money</td>
<td>3.0-4.0</td>
<td>15</td>
<td>143</td>
<td>1</td>
<td>7</td>
<td>32</td>
<td>1*100</td>
</tr>
<tr>
<td>2</td>
<td>Time&Money</td>
<td>4.0-5.0</td>
<td>16</td>
<td>159</td>
<td>1</td>
<td>8</td>
<td>24</td>
<td>2*100</td>
</tr>
<tr>
<td>3</td>
<td>Mame4</td>
<td>0.50-0.60</td>
<td>24</td>
<td>120</td>
<td>3</td>
<td>21</td>
<td>139</td>
<td>3*100</td>
</tr>
<tr>
<td>4</td>
<td>Mame4</td>
<td>0.61-0.67</td>
<td>57</td>
<td>348</td>
<td>4</td>
<td>6</td>
<td>72</td>
<td>4*100</td>
</tr>
<tr>
<td>5</td>
<td>Jaxen</td>
<td>1.067-1.069</td>
<td>12</td>
<td>24</td>
<td>3</td>
<td>0</td>
<td>6</td>
<td>6*100</td>
</tr>
<tr>
<td>6</td>
<td>Jaxen</td>
<td>1.166-1.167</td>
<td>41</td>
<td>243</td>
<td>1</td>
<td>28</td>
<td>250</td>
<td>1*100</td>
</tr>
<tr>
<td>7</td>
<td>Jaxen</td>
<td>1.19-1.21</td>
<td>69</td>
<td>645</td>
<td>1</td>
<td>7</td>
<td>29</td>
<td>2*100</td>
</tr>
<tr>
<td>8</td>
<td>Xam-Security</td>
<td>1.0-1.1</td>
<td>15</td>
<td>91</td>
<td>2</td>
<td>3</td>
<td>29</td>
<td>2*100</td>
</tr>
<tr>
<td>9</td>
<td>XStream</td>
<td>1.20-1.21</td>
<td>115</td>
<td>639</td>
<td>1</td>
<td>8</td>
<td>38</td>
<td>3*100</td>
</tr>
<tr>
<td>10</td>
<td>XStream</td>
<td>1.21-1.22</td>
<td>124</td>
<td>698</td>
<td>2</td>
<td>7</td>
<td>58</td>
<td>2*100</td>
</tr>
<tr>
<td>11</td>
<td>XStream</td>
<td>1.22-1.30</td>
<td>133</td>
<td>768</td>
<td>11</td>
<td>19</td>
<td>134</td>
<td>11*100</td>
</tr>
<tr>
<td>12</td>
<td>XStream</td>
<td>1.30-1.31</td>
<td>150</td>
<td>885</td>
<td>3</td>
<td>9</td>
<td>76</td>
<td>3*100</td>
</tr>
<tr>
<td>13</td>
<td>XStream</td>
<td>1.31-1.40</td>
<td>140</td>
<td>924</td>
<td>7</td>
<td>18</td>
<td>180</td>
<td>7*100</td>
</tr>
<tr>
<td>14</td>
<td>XStream</td>
<td>1.41-1.42</td>
<td>157</td>
<td>1,200</td>
<td>5</td>
<td>35</td>
<td>25</td>
<td>5*100</td>
</tr>
<tr>
<td>15</td>
<td>Commons-Lang</td>
<td>3.02-3.03</td>
<td>83</td>
<td>1,698</td>
<td>1</td>
<td>71</td>
<td>122</td>
<td>7*100</td>
</tr>
<tr>
<td>16</td>
<td>Commons-Lang</td>
<td>3.03-3.04</td>
<td>83</td>
<td>1,703</td>
<td>2</td>
<td>13</td>
<td>119</td>
<td>2*100</td>
</tr>
<tr>
<td>17</td>
<td>Joda-Time</td>
<td>0.96-0.97</td>
<td>10</td>
<td>219</td>
<td>2</td>
<td>1</td>
<td>43</td>
<td>2*100</td>
</tr>
<tr>
<td>18</td>
<td>Joda-Time</td>
<td>0.98-0.99</td>
<td>71</td>
<td>1,932</td>
<td>2</td>
<td>9</td>
<td>211</td>
<td>2*100</td>
</tr>
<tr>
<td>19</td>
<td>Joda-Time</td>
<td>1.10-1.20</td>
<td>90</td>
<td>2,420</td>
<td>3</td>
<td>31</td>
<td>415</td>
<td>5*100</td>
</tr>
<tr>
<td>20</td>
<td>Joda-Time</td>
<td>1.20-1.30</td>
<td>93</td>
<td>2,516</td>
<td>3</td>
<td>11</td>
<td>552</td>
<td>13*100</td>
</tr>
</tbody>
</table>

4 EXPERIMENTAL SETUP

4.1 Research Questions
We answer the following research questions to evaluate the perfor-
mance of the proposed QTEP.

RQ1. Is QTEP more effective than the state-of-the-art coverage-
based TCPs for regression test cases only?

RQ2. Is QTEP more effective than the state-of-the-art coverage-
based TCPs for all test cases (both regression and new test cases)?

RQ3. How effective are the variants of QTEP combined with static bug
finders versus defect prediction models in terms of improving
existing TCP techniques?

RQ4. How effective are static bug finders versus defect prediction
models in identifying buggy code units defined by test cases for TCP?

In RQ1 and RQ2, we explore the effectiveness of QTEP for regres-
sion test cases and all test cases respectively. In RQ3, we aim to
understand the performance of the two different types (BF-based
and DP-based) of QTEP variants. In RQ4, we investigate the perfor-
mance of static bug finders and defect prediction models in terms of
identifying buggy code units defined by test cases for TCP.

4.2 Supporting Tools
In this study, we focus on coverage-based TCPs, which require
both dynamic and static code coverage information of test cases. To
collect dynamic code coverage, following existing work [47, 48, 66],
we use the ASM bytecode manipulation and analysis framework
under FaultTracer tool [89] to collect the dynamic code coverage
information for test cases. To collect static code coverage, following
existing work [48, 50], we use the WALA framework [4] to collect
the static call graphs for the test cases, and traverse the call graphs
to obtain the involved methods and statements for each test method
and test class.
Table 1: The experimental independent variables of QTEP.

<table>
<thead>
<tr>
<th>IV1: Coverage Techniques</th>
<th>IV2: Coverage Criteria</th>
<th>IV3: Prioritization Strategies</th>
<th>IV4: Code Inspection Techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic (D)</td>
<td>Method (M)</td>
<td>Total (T)</td>
<td>Bug finders (BF)</td>
</tr>
<tr>
<td>Static-JUPTA (J)</td>
<td>Statement (S)</td>
<td>Additional (A)</td>
<td>Detect prediction (DP)</td>
</tr>
</tbody>
</table>

We use the Average Percentage Fault Detected (APFD) [65], a widely used metric for evaluating the performance of TCP techniques. APFD measures the average percentage of faults detected over the life of a test suite, and is defined by the following formula:

\[
\text{APFD} = 1 - \frac{\sum_{i=1}^{T} \frac{T F_i \times num_i}{num_i \times num_f}}{2 \times num_f}
\]

(3)

where, \(num_i\) denotes the total number of test cases, \(num_f\) denotes the total number of detected faults, and \(TF_i\) (\(1 \leq i \leq num_f\)) denotes the smallest number of test cases in sequence that need to be run in order to expose the fault \(i\). APFD values range from 0 to 1. For any given test suite, its \(num_i\) and \(num_f\) are fixed. The higher APFD value signals that the average value of \(TF_i\) is lower and thus represents a higher fault-detection rate.

4.3 Subject Systems, Test Cases, and Faults
To facilitate the replication and verification of our experiments, we choose 33 versions from 7 open source Java projects, which are widely utilized as benchmarks to address real-world test case prioritization problem [21, 50, 66]. Table 1 lists all the projects and the detailed statistical information. The sizes of these systems vary from 5.7K LOC (Time&Money) to 114.1K LOC (Joda-Time).

For regression test cases, following existing work [50, 66], for each listed version-pair, we use the real-world regression faults for regression test cases. Each version-pair has at least one real-world regression fault, which will crash at least one regression test case on the later version. For example, there are 11 regression faults (#RF) in the project P11 in Table 1.

Since not all benchmark projects have faults for new test cases, following existing work [5, 20, 32, 40, 47], we use mutation faults when considering the new test cases. We generate mutation faults using a set of carefully selected mutation operators [6], e.g., logical, arithmetic, statement deletion, etc. Specifically, we use the Major mutation tool [1] to generate these mutation faults for new test cases. Note that not all generated mutation faults can be revealed by test cases, thus we use a subset of detected faults obtained by further running Major with all test cases. For each project, we randomly select \(m\) mutation faults killed by new test cases only. We set \(m\) to be equal to the number of regression faults to simulate the real-world testing scenario. To mitigate the randomness, we repeat this process 100 times. For instance, we randomly select 11 mutation faults and repeat this 100 times as 11*100 (#NF of P11 in Table 1). Thus, we have 100 fault version-pairs for each of experimental subjects when considering new test cases.

4.4 Evaluation Measure
We use the Average Percentage Fault Detected (APFD) [65], a widely used metric for evaluating the performance of TCP techniques. APFD measures the average percentage of faults detected over the life of a test suite, and is defined by the following formula:

4.5 Experimental Scenarios
Table 2 shows the TCP scenario options in our experiments. By combining these options, four different TCP scenarios can be defined. We first conduct TCP at two different granularity levels, i.e., method (M) and class (C). In addition, following existing work [47], we also conduct TCP for (1) regression test cases only (R), and (2) all test cases (regression and newly added test cases, RN). Running regression test cases only or running all the test cases are two practical testing activities during software evolution [55]. Based on the combinations of these settings, the four scenarios are defined as follows: regression test method (M-R), regression test class (C-R), all test method (regression and newly added) (M-RN), and all test class (regression and newly added) (C-RN). In Section 5, we report APFD values for these four scenarios.

Table 2: The experimental scenarios for TCPs in this work.

<table>
<thead>
<tr>
<th>Test Granularities</th>
<th>Test Case Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method (M)</td>
<td>Regression test cases (R)</td>
</tr>
<tr>
<td>Class (C)</td>
<td>Regression+ New test cases (RN)</td>
</tr>
</tbody>
</table>

All the test prioritization techniques have been implemented in Java and all the experiments were carried out on a 4.0GHz i5-2400 desktop with 6GB of memory.
in the tuning process, which includes $100 \times 100 \times 20$ (#project) ×16 (#variants of QTEP) experiments for regression test cases, and $100 \times 100 \times 20$ (#project) ×20 (#mutation fault version) × 16 (#variants of QTEP) experiments for all test cases (regression and new test cases).

Figure 2 (a) and Figure 2 (b) show the distribution of the best values of parameters $weight_c$ and $weight_m$ for all the 16 variants of QTEP on the 20 version-pairs. We could see that the best values of $weight_c$ and $weight_m$ vary dramatically for different projects. On average, for variants of QTEP that are adapted from static-coverage-based TCPs, $weight_c$ is 16.7 times of $weight_base$ and $weight_m$ is 13.1 times of $weight_base$. For variants of QTEP that are adapted from dynamic-coverage-based TCPs, $weight_c$ is 18.7 times of $weight_base$ and $weight_m$ is 11.6 times of $weight_base$.

In this work, we use the best values of $weight_c$ and $weight_m$ that are obtained from the first version-pair of a project as default parameters for all the left version-pairs of this project. Note that since project Xml-Security only has one available version-pair from the existing benchmark dataset, thus for this project, we tune parameters and report the performance on the same version-pair.

5 RESULTS

5.1 RQ1 & RQ2: Performance of QTEP for Regression and All Test Cases

Figure 3 and Figure 4 show the comparison results in the four scenarios on each of the 20 version-pairs. Specifically, they show the boxplots of the APFD values for the 16 variants of QTEP, the eight variants of coverage-based TCPs, and the random baseline RT in the four scenarios. Each sub-figure presents the detailed APFD results of one type of QTEP (i.e., static-coverage-based or dynamic-coverage-based variants of QTEP) and the corresponding baseline TCPs on a specific scenario. For example, Figure 3 (a) shows the C-R (regression test class) scenario of static-coverage-based techniques, RT, and static-coverage-based variants of QTEP, while Figure 4 (a) shows the C-R scenario of dynamic-coverage-based techniques, RT, and dynamic-coverage-based variants of QTEP. Each boxplot presents the APFD distribution (median and upper/lower quartiles) of prioritization results of one variant of QTEP on the 20 version-pairs. We use gray (●), white (○), yellow (●), blue (●), and red (●) boxes to represent the random, static-coverage-based, dynamic-coverage-based, DP-based QTEP, and BF-based QTEP techniques respectively.

The figures show that overall both DP-based (●) and BF-based (○) variants of QTEP could outperform corresponding traditional coverage-based TCPs (●) and RT (●) for both regression test cases and new test cases at both method-level and class-level TCPs. In addition, static-coverage-based variants of QTEP techniques are overall more effective than dynamic-coverage-based variants of QTEP. Specifically, for C-R, among all examined TCP techniques, JMT-BF produces the best APFD with a median value of 0.79, which is almost 10% higher than the best traditional coverage-based technique, i.e., JMT. For M-R, JMT-BF outperforms all other examined TCPs. While considering new test cases, JMA-BF and JST-BF produce the best performance for C-RN and M-RN respectively.

We further take a closer look at each individual program. To save space, we only show the detailed comparison between the results of static-coverage-based variants of QTEP and the results

The IV4 is a technical option in QTEP for detecting buggy code and further weighting source code units. By combining all IVs including IV4, we can define 16 variants of QTEP. Based on acronyms for IV options in Table 3, the 16 variants of QTEP are DMT-BF, DMA-BF, DST-BF, DSA-BF, JMT-BF, JMA-BF, JST-BF, JSA-BF, DMT-DF, DMA-DF, DST-DF, DSA-DF, JMT-DF, JMA-DF, JST-DF, and JSA-DF. To investigate the TCP performance of QTEP, we compare the 8 combinations from IV1–IV3 and RT to the 16 variants in Section 5.46 Parameter Setting

As presented in Section 3.2, our algorithm for weighting source code has three parameters, i.e., $weight_base$ (default weight for all code units), $weight_c$ (weight for detected buggy classes), and $weight_m$ (weight for detected buggy methods). Different weights of these parameters could significantly affect the performance of QTEP. In this section, we study the impact of the three parameters of QTEP on the performance of prioritizing both regression and all test cases (both regression and new test cases). Specifically, for regression test cases, we select the first version-pair from each project listed in Table 1 as experimental subjects. When considering both regression and new test cases, we randomly selected 20 faulty versions from the first version-pair of each project as experimental subjects.

We then tune the parameters for each project using each of the 16 variants in QTEP (described in 4.5) and evaluate the specific values of the parameters by the average APFD scores at the class and the method levels (with or without new test cases).

For simplifying the tuning process, we set $weight_base$ equal to 1. Then, we set $weight_c$ equal to $c \times weight_base$ and $weight_m$ equal to $m \times weight_base$, we experiment c and m with a range from 1 to 100. We use all the combinations of the three weights...
The comparison between the dynamic-coverage-based variants of QTEP and the corresponding coverage-based TCPs is also available online [2].

Table 4 shows the average APFD values of all static-coverage-based variants of QTEP and the corresponding coverage-based TCPs on each project. Numbers in brackets are the improvements of DP-based (●) and BF-based (○) variants of QTEP compared to corresponding coverage-based TCPs. We can see that BF-based (○) variants of QTEP improve the APFD values for all the projects. However, the improvement varies on different projects. For example, on project Time&Money, JSA-BF achieves the best APFD for C-R (i.e., 0.91), which is 14 percentage points higher than the corresponding JSA (i.e., 0.77). While on XStream, the improvement is only 1 percentage point. In the worst case, e.g., JSA-DP, QTEP does not improve traditional coverage-based TCPs. The same phenomenon is also observed in dynamic-coverage-based variants of QTEP.

The variations of improvements depending on different projects might be because the performance of fault detection varies on different projects. To explore this, we further compute the Spearman correlation between the false positive rates and the improvements of DP-based and BF-based QTEP on all projects. Results show that the Spearman correlation values for the false positive rates and the improvements of DP-based and BF-based QTEP are -0.50 and -0.52 respectively. This indicates that the performance of QTEP on each project is negatively correlated with the false positive rate of the investigated code inspection technique on this project.

In addition, figures (i.e., Figure 3 and Figure 4) show that all static-coverage-based variants of QTEP generate better results than RT and the improvement ranges from 9 to 30 percentage points. However, we also note that the performance of dynamic-coverage-based variants of QTEP has a dramatically decline when considering M-RN and C-RN compared to static-coverage-based variants of QTEP, and cannot even outperform RT. For example, the APFD of DSA-DP in M-RN is only 0.28, which is 26 percentage points lower than RT. This is because the dynamic coverage information comes from the last execution of the test suite, which does not contain the new test cases. Thus, the faults that can be revealed only by the new test cases are ignored since the coverage information of new test cases is always unavailable in the dynamic-coverage-based TCPs [47, 48]. While, static coverage information of both regression and new test cases could be obtained by static code analysis. Thus, the performances of static-coverage-based variants of QTEP are similar between with and without the new test cases.

For statistical tests, we also conduct the Wilcoxon signed-rank test (p < 0.05) to compare the performance of QTEP and existing TCPs. Specifically, we compare each variant of QTEP with its corresponding coverage-based TCP technique on all projects for both regression and new test cases. Results show that eight of the 16 variants of QTEP could achieve significantly better performance than the corresponding coverage-based TCPs (i.e., JMT-DP, JMT-BF, JST-BF, JSA-BF, DST-BF, DSA-DP, and DSA-BF). For the other eight variants, their performances are slightly better or equal to the corresponding coverage-based TCPs.

In summary, QTEP is overall more effective than the corresponding coverage-based TCP techniques. While dynamic-coverage-based QTEP variants exhibit significantly better performance on regression test cases than on all test cases, static-coverage-based QTEP variants produce similarly good performance on both regression test cases and all test cases (both regression and new test cases).
5.2 RQ3: Comparison between the Two Categories of QTEP’s Variants

In order to answer RQ3, we first weight all source code units with the detection results from both defect prediction models and FindBugs using Algorithm 1. Note that, in Algorithm 1, we use the tuned best values of weight c and weight m (details are in Section 4.6) for each project under different code inspection techniques. We then run all variants of QTEP on all version-pairs (P1–P20). As we stated in Section 1, different from most of the existing TCP related studies [44, 50, 64, 66, 82] (mainly focused on regression test cases), in this work, we extensively explore the performance of QTEP on both regression test cases and all test cases. Thus, for each version-pair, we perform experiments on four different scenarios: M-R, C-R, M-RN, and C-RN (details are in Section 4.5).

Table 5 and Table 6 present the average APFDs of all the 16 variants of QTEP on the four different scenarios of the 20 version-pairs. We conduct the Wilcoxon signed-rank test (p < 0.05) to compare the performance of BF-based and DP-based variants of QTEP. Between these two variants, better APFD values with statistical significance are shown with an asterisk (*) in Table 5 and Table 6. Results show that overall BF-based variants of QTEP are significantly better than DP-based variants. The improvement could be up to 6 percentage points (JMT-BF: 0.69 vs JMT-DP: 0.63 in M-R of Table 5). Specifically, JMT-BF outperforms all the other variants of QTEP in terms of the average APFD at M-R (i.e., 0.69, C-R (i.e., 0.79), M-RN (i.e., 0.77), and C-RN (i.e., 0.78). One possible reason is BF has a lower false positive rate than DP (details are in Section 5.3).

We further investigate whether the APFDs of different variants of QTEP vary with the false positive rates of the two code inspection techniques. Specifically, we compute the Spearman correlation between the false positive rates and the APFD values of these two

<table>
<thead>
<tr>
<th>Scenario</th>
<th>JMT-DP</th>
<th>JMT-BF</th>
<th>JMT-MP</th>
<th>JMT-MB</th>
<th>C-R</th>
<th>C-RN</th>
<th>M-R</th>
<th>M-RN</th>
<th>C-R</th>
<th>C-RN</th>
<th>M-R</th>
<th>M-RN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time&Money</td>
<td></td>
</tr>
<tr>
<td>C-R</td>
<td>0.65</td>
<td>0.67</td>
<td>0.69</td>
<td>0.70</td>
<td>0.73</td>
<td>0.74</td>
<td>0.75</td>
<td>0.76</td>
<td>0.77</td>
<td>0.78</td>
<td>0.79</td>
<td>0.80</td>
</tr>
<tr>
<td>M-R</td>
<td>0.61</td>
<td>0.62</td>
<td>0.64</td>
<td>0.65</td>
<td>0.70</td>
<td>0.71</td>
<td>0.72</td>
<td>0.73</td>
<td>0.74</td>
<td>0.75</td>
<td>0.76</td>
<td>0.77</td>
</tr>
<tr>
<td>C-RN</td>
<td>0.38</td>
<td>0.39</td>
<td>0.40</td>
<td>0.41</td>
<td>0.42</td>
<td>0.43</td>
<td>0.44</td>
<td>0.45</td>
<td>0.46</td>
<td>0.47</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td>M-RN</td>
<td>0.58</td>
<td>0.59</td>
<td>0.60</td>
<td>0.61</td>
<td>0.62</td>
<td>0.63</td>
<td>0.64</td>
<td>0.65</td>
<td>0.66</td>
<td>0.67</td>
<td>0.68</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Table 5: The average APFDs of the variants of QTEP that are adapted from static-coverage-based TCPs.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>JMT-DP</th>
<th>JMT-BF</th>
<th>JMT-MP</th>
<th>JMT-MB</th>
<th>C-R</th>
<th>C-RN</th>
<th>M-R</th>
<th>M-RN</th>
<th>C-R</th>
<th>C-RN</th>
<th>M-R</th>
<th>M-RN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time&Money</td>
<td></td>
</tr>
<tr>
<td>C-R</td>
<td>0.65</td>
<td>0.67</td>
<td>0.69</td>
<td>0.70</td>
<td>0.73</td>
<td>0.74</td>
<td>0.75</td>
<td>0.76</td>
<td>0.77</td>
<td>0.78</td>
<td>0.79</td>
<td>0.80</td>
</tr>
<tr>
<td>M-R</td>
<td>0.61</td>
<td>0.62</td>
<td>0.64</td>
<td>0.65</td>
<td>0.70</td>
<td>0.71</td>
<td>0.72</td>
<td>0.73</td>
<td>0.74</td>
<td>0.75</td>
<td>0.76</td>
<td>0.77</td>
</tr>
<tr>
<td>C-RN</td>
<td>0.38</td>
<td>0.39</td>
<td>0.40</td>
<td>0.41</td>
<td>0.42</td>
<td>0.43</td>
<td>0.44</td>
<td>0.45</td>
<td>0.46</td>
<td>0.47</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td>M-RN</td>
<td>0.58</td>
<td>0.59</td>
<td>0.60</td>
<td>0.61</td>
<td>0.62</td>
<td>0.63</td>
<td>0.64</td>
<td>0.65</td>
<td>0.66</td>
<td>0.67</td>
<td>0.68</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Table 6: The average APFDs of the variants of QTEP that are adapted from dynamic-coverage-based TCPs.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>JMT-DP</th>
<th>JMT-BF</th>
<th>JMT-MP</th>
<th>JMT-MB</th>
<th>C-R</th>
<th>C-RN</th>
<th>M-R</th>
<th>M-RN</th>
<th>C-R</th>
<th>C-RN</th>
<th>M-R</th>
<th>M-RN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time&Money</td>
<td></td>
</tr>
<tr>
<td>C-R</td>
<td>0.65</td>
<td>0.67</td>
<td>0.69</td>
<td>0.70</td>
<td>0.73</td>
<td>0.74</td>
<td>0.75</td>
<td>0.76</td>
<td>0.77</td>
<td>0.78</td>
<td>0.79</td>
<td>0.80</td>
</tr>
<tr>
<td>M-R</td>
<td>0.61</td>
<td>0.62</td>
<td>0.64</td>
<td>0.65</td>
<td>0.70</td>
<td>0.71</td>
<td>0.72</td>
<td>0.73</td>
<td>0.74</td>
<td>0.75</td>
<td>0.76</td>
<td>0.77</td>
</tr>
<tr>
<td>C-RN</td>
<td>0.38</td>
<td>0.39</td>
<td>0.40</td>
<td>0.41</td>
<td>0.42</td>
<td>0.43</td>
<td>0.44</td>
<td>0.45</td>
<td>0.46</td>
<td>0.47</td>
<td>0.48</td>
<td>0.49</td>
</tr>
<tr>
<td>M-RN</td>
<td>0.58</td>
<td>0.59</td>
<td>0.60</td>
<td>0.61</td>
<td>0.62</td>
<td>0.63</td>
<td>0.64</td>
<td>0.65</td>
<td>0.66</td>
<td>0.67</td>
<td>0.68</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Overall, BF-based variants of QTEP are more effective than DP-based variants for both regression test cases and all test cases (both regression and new test cases).

5.3 RQ4: Effectiveness of FindBugs and Defect Prediction Models

To answer RQ4, we first collect the failure trace of each failed test case on each version-pair and then we parse the failure traces to label all involved source classes and methods as buggy. Source classes and methods that are not involved are labeled as clean.

We then use defect prediction models and FindBugs to identify buggy code units on the later version of each of the 20 version-pairs.
Table 7: The performance of CLAMI and FindBugs on revealing buggy code units. P is precision and R is recall.

<table>
<thead>
<tr>
<th>Granularity</th>
<th>CLAMI P</th>
<th>CLAMI R</th>
<th>FindBugs P</th>
<th>FindBugs R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class</td>
<td>0.250</td>
<td>0.496</td>
<td>0.276</td>
<td>0.178</td>
</tr>
<tr>
<td>Method</td>
<td>0.115</td>
<td>0.193</td>
<td>0.138</td>
<td>0.027</td>
</tr>
</tbody>
</table>

Figure 5: False positive rates of the two code inspection techniques

Note that, we label buggy source classes and methods using the failure traces of failed test cases instead of posted bug reports [57]. This might make the ratio of buggy classes and methods quite small. For instance, when labeling version-pair 3.02-3.03 of Commons-Lang, only 1 out of 196 classes and 2 out of 1,552 methods are labeled as buggy. That is because there is only one failed test case among all regression test cases. Such a limited number of labeled buggy classes and methods could make the different performances between our study and the previous studies on defect prediction [57] and bug finders [62, 77].

To measure the performance of the two code inspection techniques, we use Precision and Recall, which are widely used to evaluate defect prediction models [31, 51, 56, 80, 91] and bug finders [77]. Precision is the percentage of correctly identified buggy code units in all the code units which are identified buggy, and recall is the percentage of correctly identified buggy code units in all the real buggy code units. To show the overall performance, we use the weighted average precision and recall following existing work [72].

Table 7 summarizes the weighted average performance of CLAMI and FindBugs on the 20 version-pairs listed in Table 1. Specifically, we could see that CLAMI has better recall values than FindBugs at both class and method levels. However, CLAMI has smaller precision values than FindBugs. This implies CLAMI may generate more false positives. We further show the false positive rates in Figure 5, from which we could see that at both class level and method level, CLAMI has a 3.0% higher false positive rate.

In summary, defect prediction models identify more buggy code units, while FindBugs has a lower false positive rate.

5.4 Time and Memory Overhead

Comparing with traditional coverage-based TCPs, the extra running overhead of QTEP depends on the applied code inspection techniques, i.e., defect prediction models and bug finders, and our source-code-weight algorithm. To understand the overhead of QTEP, we collect the time and space costs for all experiments, and details are presented in Table 8. We can see that the total execution time for weighting source code, running defect prediction models and FindBugs varies from 7.0 to 75.2 seconds. The largest project (in terms of the number of test cases), Joda-Time, uses 96.5MB of memory. As shown in the table, code inspection techniques spent more time than weighting source code units. The total time cost on each project is less than 2 minutes. Overall, the results demonstrate QTEP’s practical aspect.

6 DISCUSSION

6.1 Does the Combination of BF and DP Achieve Better Performance for TCP?

In this work, we have explored the feasibility of leveraging the results of both static bug finders and statistical defect prediction models to improve testing efficiency. As shown in Section 5.2, both BF-based and DP-based variants of QTEP could improve coverage-based TCPs. In this section, we further examine whether combining the detection results of BF and DP could achieve better results. Specifically, following the described process of QTEP in Section 3, we use the combination of detection results of the two code inspection techniques to tune and weight source code units. And then we run the new eight (adapted from both dynamic- and static-coverage-based TCPs) variants of QTEP on the 20 version-pairs. Note that, we experiment with two combinations, i.e., union and intersection.

Overall, the intersection combination produces better performance than the union combination. When comparing with BF-based and DP-based variants of QTEP, results show that the union-combination-based QTEP has a similar performance to DP-based QTEP, we further perform one-way ANOVA analysis [81] at the significance level of 0.05 to investigate whether there is a significant difference between the performance of these two approaches. The high p (0.978) indicates that there is no significant difference between the union-combination-based and DP-based QTEP. In addition, the intersection-combination-based and BF-based QTEP perform similar, also our ANOVA test shows there is no significant difference between them.

The above results suggest that both the union-combination-based and the intersection-combination-based QTEP cannot outperform BF-based QTEP.

To explore this issue, we further show the overlaps between detection results of BF and DP in Figure 6. We could see that at the class level, over 60% detected buggy classes by FindBugs are overlapped...
with the buggy classes detected by CLAMI, while the overlaps account for only 20% of the detected buggy classes in CLAMI. At the method level, about 52% predicted buggy methods are overlapped with FindBugs, however the overlaps only account for up to 6% of the detected buggy methods in CLAMI. Consequently, the detection result of the union set from FindBugs and CLAMI is quite similar to the result of CLAMI. While, the detection result of the intersection set is similar to the result of FindBugs. This could help explain why the union-combination-based QTEP and DP-based QTEP produce similar results and the intersection-combination-based QTEP has similar performance to BF-based QTEP.

6.2 Practical Guidelines for TCP

Our study reveals several interesting findings that can serve as the practical guidelines for improving test efficiency.

For different scenarios. Overall, both dynamic- and static-coverage-based variants of QTEP are applicable for improving prioritization of regression test cases. While for prioritizing all test cases (both regression and new test cases), we only recommend static-coverage-based QTEP, since dynamic-coverage-based QTEP cannot handle new test cases well.

For different projects. As we described in Section 5.1, the performance of QTEP on a project is negatively correlated with the false positive rate of the used code inspection technique on this project. Thus, users could choose either DP-based or BF-based QTEP by considering their false positive rates on the history data of this project. While for new projects (no history data are available), we recommend BF-based QTEP, since our experiment results show that DP tends to have a higher false positive rate than BF.

6.3 Threats to Validity

Internal Validity. The proposed QTEP leverages two code inspection techniques to help regression testing. An assumption behind this combination is that the bugs detected by each of them are (largely) different. Our manual inspection confirms this assumption, e.g., all the bugs in the dataset cannot be detected by FindBugs. Some bugs are project-specific bugs, that could be revealed by regression testing only. Note that, our work also suggests that using each technique alone could complement each other to detect more bugs. The success of the proposed approach may also depend on the effectiveness of the static bug finder, i.e., FindBugs and the defect prediction model, i.e., CLAMI. With different static bug finders or different defect prediction models, the performance of QTEP may vary. To evaluate the quality of prioritization, we choose APFD, which has been extensively used in the field of TCP. However, APFD can not reflect time and space costs or the severity of faults. We plan to use more metrics, e.g., APFDx [23], to reduce this threat.

External Validity. In this work, all the experiment subjects are open source projects and written in Java with JUnit test cases. Although they are popular projects and widely used in TCP research, our findings may not be generalizable to commercial projects or projects in other languages. To mitigate this threat, we plan to explore the effectiveness of QTEP on C/C++ projects in the future.

7 RELATED WORK

Many regression testing techniques have been proposed for improving test efficiency by test case prioritization [16, 17, 28, 36, 37, 41, 44, 50, 64–66, 73, 74, 82, 83, 88], test case selection [10, 63, 68], and test case reduction [11, 67, 90]. In terms of TCP techniques, Rothermel et al. [64] first presented a family of prioritization techniques including both the total and additional test prioritization strategies using various coverage information.

A majority of existing TCPs leverage code coverage information to rank test cases. Dynamic code coverage from the last execution is widely used in existing TCP techniques [37, 44, 65, 82]. Another widely used code coverage is static code coverage, which is estimated from static analysis. Mei et al. [50] are the first to prioritize test cases with static code coverage information.

Some other TCP techniques [19, 35, 59, 66] leveraged similarity between test cases and source code to prioritize test cases. Specifically, Saha et al. [66] proposed an information retrieval approach for regression testing prioritization based on program changes. Noor et al. [59] proposed a similarity-based approach for test case prioritization using historical failure data.

Instead of using the coverage or similarity information between source code and test cases, some approaches use other software process information as the proxy to rank test cases [7, 27, 43, 52–54, 75, 76, 85, 88]. Arafeen et al. [7] used software requirements to group and rank test cases. Engstrom et al. [27] selected a small set of test cases for regression testing selection based on previously fixed faults. Their work required previously revealed bugs within a given period. For projects that do not have well-maintained bugs or new projects (no past bugs are available), their approach cannot work. While QTEP does not have such limitation, since it focuses on potentially unrevealed faults. Laali et al. [43] proposed to utilize the locations of revealed faults of the executed test cases to rank the remaining test cases. Different from QTEP, they used injected faults, and the performance of their approach on real-world faults is unknown. Yu et al. [85] proposed the fault-based prioritization of test cases that is designed by using the fault-based test case generation models. Different from QTEP, their approach assumed the fault-detecting ability of each test case is available. Miranda et al. [53] proposed scope-aided TCP for testing the reused code by using possible constraints delimiting the new input domain scope.

On the contrary, QTEP is not limited to testing the reused code.

8 CONCLUSION

In this paper, to address the limitations of existing TCP algorithms, we present a quality-aware TCP technique named QTEP. Specifically, we leverage code inspection techniques, i.e., statistical defect prediction models and static bug detection techniques, to detect fault-prone source code and then adapt existing coverage-based TCP algorithms by considering the weighted defectiveness of source code. Our evaluation shows that QTEP could improve existing coverage-based TCP techniques for both regression test cases and all test cases. As future work, we plan to explore the impact of fault-revealing capability of test suites and the severities of different bugs on the performance of QTEP. We also plan to investigate the different aggregations of code inspection results in QTEP.

ACKNOWLEDGMENTS

The authors thank the anonymous reviewers for their feedback which helped improve this paper. This work was partially supported by the Natural Sciences and Engineering Research Council of Canada.
REFERENCES

[26] René Just, Dariusz Jalali, Laura Inozemtseva, Michael D Ernst, Reid Holmes, and Gordon Fraser. Are mutants a valid substitute for real faults in software testing?. In FSE’14, 654–665.
[34] Qi Luo, Kevin Moran, and Denys Poshyvanyk. A large-scale empirical comparison of static and dynamic test case prioritization techniques. In FSE ’16, 559–570.
[71] Lin Tan, Ding Yuan, Gopal Krishna, and Yuanyuan Zhou. "iComment: Bugs or bad comments?". In SOSP’07. 145–158.

[75] Paolo Tonella, Paolo Avesani, and Angelo Susi. Using the case-based ranking methodology for test case prioritization. In ICSM’06. 123–133.

[76] Sujata Varun Kumar and Mohit Kumar. Test Case Prioritization Using Fault Severity. IJCS’10 1, 1 (2010).

[88] Lingming Zhang, Dan Hao, Lu Zhang, Gregg Rothermel, and Hong Mei. Bridging the gap between the total and additional test-case prioritization strategies. In ICSE’13. 192–201.

